26 research outputs found

    Computational Biology and Bioinformatics in Nigeria

    Get PDF
    Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries. © 2014 Fatumo et al.SAF was supported by H3ABioNet NABDA Node, Abuja, Nigeria with NIH Common Fund Award/NHGRI Grant Number U41HG006941 and Genetic Epidemiology Group at Wellcome Trust Sanger Institute.Published versio

    Genetic loci implicated in meta-analysis of body shape in Africans.

    Get PDF
    BACKGROUND AND AIMS: Obesity is one of the leading causes of non-communicable diseases (NCD). Thus, NCD risk varies in obese individuals based on the location of their fat depots; while subcutaneous adiposity is protective, visceral adiposity increases NCD risk. Although, previously anthropometric traits have been used to quantify body shape in low-income settings, there is no consensus on how it should be assessed. Hence, there is a growing interest to evaluate body shape derived from the principal component analysis (PCA) of anthropometric traits; however, this is yet to be explored in individuals of African ancestry whose body shape is different from those of Europeans. We set out to capture body shape in its multidimensional structure and examine the association between genetic variants and body shape in individuals of African ancestry. METHOD AND RESULTS: We performed a genome-wide association study (GWAS) for body shape derived from PCA analysis of anthropometric traits in the Ugandan General Population Cohort (GPC, n = 6407) and the South African Zulu Cohort (SZC, n = 2595), followed by a GWAS meta-analysis to assess the genetic variants associated with body shape. We identified variants in FGF12, GRM8, TLX1NB and TRAP1 to be associated with body shape. These genes were different from the genes been associated with BMI, height, weight, WC and waist-hip ration in continental Africans. Notably, we also observed that a standard deviation change in body shape was associated with an increase in blood pressure and blood lipids. CONCLUSION: Variants associated with body shape, as a composite variable might be different for those of individual anthropometric traits. Larger studies are required to further explore these phenomena

    Bioinformatics, Computational Informatics, and Modeling Approaches to the Design of mRNA COVID-19 Vaccine Candidates.

    Get PDF
    This article is devoted to applying bioinformatics and immunoinformatics approaches for the development of a multi-epitope mRNA vaccine against the spike glycoproteins of circulating SARS-CoV-2 variants in selected African countries. The study’s relevance is dictated by the fact that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began its global threat at the end of 2019 and since then has had a devastating impact on the whole world. Measures to reduce threats from the pandemic include social restrictions, restrictions on international travel, and vaccine development. In most cases, vaccine development depends on the spike glycoprotein, which serves as a medium for its entry into host cells. Although several variants of SARS-CoV-2 have emerged from mutations crossing continental boundaries, about 6000 delta variants have been reported along the coast of more than 20 countries in Africa, with South Africa accounting for the highest percentage. This also applies to the omicron variant of the SARS-CoV-2 virus in South Africa. The authors suggest that bioinformatics and immunoinformatics approaches be used to develop a multi-epitope mRNA vaccine against the spike glycoproteins of circulating SARS-CoV-2 variants in selected African countries. Various immunoinformatics tools have been used to predict T- and B-lymphocyte epitopes. The epitopes were further subjected to multiple evaluations to select epitopes that could elicit a sustained immunological response. The candidate vaccine consisted of seven epitopes, a highly immunogenic adjuvant, an MHC I-targeting domain (MITD), a signal peptide, and linkers. The molecular weight (MW) was predicted to be 223.1 kDa, well above the acceptable threshold of 110 kDa on an excellent vaccine candidate. In addition, the results showed that the candidate vaccine was antigenic, non-allergenic, non-toxic, thermostable, and hydrophilic. The vaccine candidate has good population coverage, with the highest range in East Africa (80.44%) followed by South Africa (77.23%). West Africa and North Africa have 76.65% and 76.13%, respectively, while Central Africa (75.64%) has minimal coverage. Among seven epitopes, no mutations were observed in 100 randomly selected SARS-CoV-2 spike glycoproteins in the study area. Evaluation of the secondary structure of the vaccine constructs revealed a stabilized structure showing 36.44% alpha-helices, 20.45% drawn filaments, and 33.38% random helices. Molecular docking of the TLR4 vaccine showed that the simulated vaccine has a high binding affinity for TLR-4, reflecting its ability to stimulate the innate and adaptive immune response

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    Multivariate GWAS analysis reveals loci associated with liver functions in continental African populations.

    No full text
    BackgroundLiver disease is any condition that causes liver damage and inflammation and may likely affect the function of the liver. Vital biochemical screening tools that can be used to evaluate the health of the liver and help diagnose, prevent, monitor, and control the development of liver disease are known as liver function tests (LFT). LFTs are performed to estimate the level of liver biomarkers in the blood. Several factors are associated with differences in concentration levels of LFTs in individuals, such as genetic and environmental factors. The aim of our study was to identify genetic loci associated with liver biomarker levels with a shared genetic basis in continental Africans, using a multivariate genome-wide association study (GWAS) approach.MethodsWe used two distinct African populations, the Ugandan Genome Resource (UGR = 6,407) and South African Zulu cohort (SZC = 2,598). The six LFTs used in our analysis were: aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), total bilirubin, and albumin. A multivariate GWAS of LFTs was conducted using the exact linear mixed model (mvLMM) approach implemented in GEMMA and the resulting P-values were presented in Manhattan and quantile-quantile (QQ) plots. First, we attempted to replicate the findings of the UGR cohort in SZC. Secondly, given that the genetic architecture of UGR is different from that of SZC, we further undertook similar analysis in the SZC and discussed the results separately.ResultsA total of 59 SNPs reached genome-wide significance (P = 5x10-8) in the UGR cohort and with 13 SNPs successfully replicated in SZC. These included a novel lead SNP near the RHPN1 locus (lead SNP rs374279268, P-value = 4.79x10-9, Effect Allele Frequency (EAF) = 0.989) and a lead SNP at the RGS11 locus (lead SNP rs148110594, P-value = 2.34x10-8, EAF = 0.928). 17 SNPs were significant in the SZC, while all the SNPs fall within a signal on chromosome 2, rs1976391 mapped to UGT1A was identified as the lead SNP within this region.ConclusionsUsing multivariate GWAS method improves the power to detect novel genotype-phenotype associations for liver functions not found with the standard univariate GWAS in the same dataset
    corecore